### Reprogramming anchorage dependency by adherent-to-suspension CytoGen transition promotes metastatic dissemination

- Journal : Molecular Cancer (IF: 41.44)
- Date : March 2023.
- Authors : H.D. Huh, Y. Sub, J. Oh, Y.E. Kim, J.Y. Lee, H.-R. Kim, S. Lee, H. Lee, S. Pak, S.E. Amos, D. Vahala, J.H. Park, J.E. Shin, S.Y. Park, H.S. Kim, Y.H. Roh, H.-W. Lee, K.-L. Guan, Y.S. Choi, J. Jeong, J. Choi, J.-S. Roe, H.Y. Gee, and H.W. Park

**Study Aim:** To investigate the mechanism by which solid tumor cells reprogram their anchorage dependency to become circulating tumor cells (CTCs) during metastatic dissemination.

### Methods:

- Transcriptome analysis of adherent and suspension cell lines
- In vitro experiments with genetically modified cell lines
- Mouse xenograft models of breast cancer and melanoma
- Single-cell RNA sequencing of patient-derived and mouse model-derived CTCs
- Immunohistochemistry of patient samples
- Loss-of-function experiments using shRNA knockdown and pharmacological inhibition

### **Key Findings:**

- Identified four key transcription factors (IKZF1, NFE2, BTG2, and IRF8) that induce Adherent-to-Suspension Transition (AST)
- AST factors suppress cell-matrix adhesion genes via YAP-TEAD inhibition and upregulate globin genes for anoikis resistance
- AST factors are expressed in CTCs but not in primary tumors or metastases
- Blocking AST factors reduced CTC formation and metastasis without affecting primary tumor growth
- Thalidomide derivatives, which target IKZF1, showed potential as anti-metastatic agents

### **Conclusions:**

- AST is a novel mechanism by which solid tumor cells reprogram their anchorage dependency to become CTCs
- Solid tumor cells hijack hematopoietic transcription factors (AST factors) to enable their dissemination as CTCs
- AST factors represent promising therapeutic targets for preventing metastasis
- This study expands the cancer treatment paradigm towards directly intervening in the metastatic spread of cancer

The study uncovers a novel mechanism called Adherent-to-Suspension Transition (AST) that enables cancer cells to become circulating tumor cells, promoting metastasis and offering new targets for anti-metastatic therapies.

## Reprogramming anchorage dependency by adherent-to-suspension CytoGen transition promotes metastatic dissemination

de novo metastatic

breast cancer patients

Tumour

Single cell RNAseq

Blood

CTC

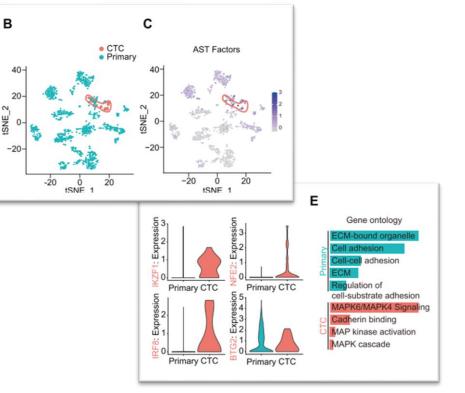
А

#### RESEARCH

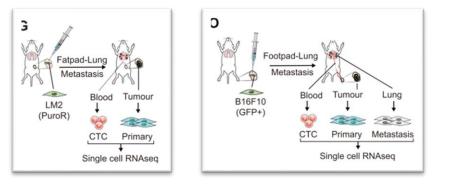
# Reprogramming anchorage dependency by adherent-to-suspension transition promotes metastatic dissemination

Hyunbin D. Huh<sup>1†</sup>, Yujin Sub<sup>2†</sup>, Jongwook Oh<sup>2†</sup>, Ye Eun Kim<sup>1</sup>, Ju Young Lee<sup>1</sup>, Hwa-Ryeon Kim<sup>1</sup>, Soyeon Lee<sup>2</sup>, Hannah Lee<sup>1</sup>, Sehyung Pak<sup>3</sup>, Sebastian E. Amos<sup>4</sup>, Danielle Vahala<sup>4</sup>, Jae Hyung Park<sup>1</sup>, Ji Eun Shin<sup>1</sup>, So Yeon Park<sup>1</sup>, Han Sang Kim<sup>5</sup>, Young Hoon Roh<sup>6</sup>, Han-Woong Lee<sup>1</sup>, Kun-Liang Guan<sup>7</sup>, Yu Suk Choi<sup>4</sup>, Joon Jeong<sup>8</sup>, Junjeong Choi<sup>9</sup>, Jae-Seok Roe<sup>1\*</sup>, Heon Yung Gee<sup>2\*</sup> and Hyun Woo Park<sup>1\*</sup>

- > Study of Adherent-to-Suspension Transition (AST) factors in CTC
- > de novo metastatic breast cancer patients' tissue/blood sample
- Identified increased AST factors (IKZF1, IRF8, NFE2, BTG2)
- Targeting AST factors can block CTC generation/metastasis independent of primary tumor growth


### Discovery of new biomarkers and biological phenomenon

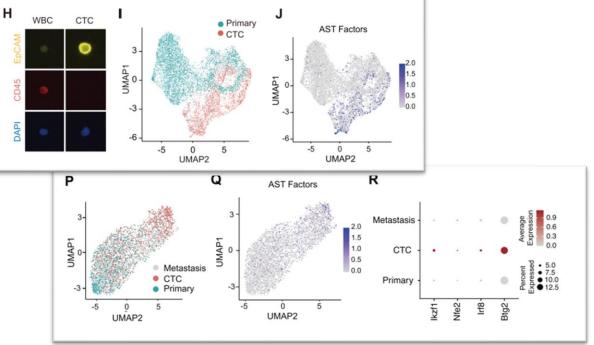
### The research conducted by Professor Hyunwoo Park of the AST Research Group at Yonsei University is exploring the molecular mechanisms of cancer metastasis in a mouse model using Cytogen's platform.


**Open Access** 



Analyzation of patient's tissue/blood samples




Reprogramming anchorage dependency by adherent-to-suspension CytoGen transition promotes metastatic dissemination



• Using CytoGen's HDM chip for CTC detection in Orthotopic model

- Utilized in preclinical animal model research.
- Able to isolate live CTCs from an orthotopic model.
- Proposes new therapeutic strategies.

Isolated CTC Analyzation using IF staining and transcriptomes

