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Abstract 

 

To overcome this, imaging processing techniques have been applied to continue the 

development of the automatic cell-counting method in order to count fluorescence-

stained cancer cells in the field of cytology automation. However, because the 

fluorescent intensities of fluorescence-stained cells are outputted differently, it is 

difficult to count cells automatically. Thus, the standardization of fluorescence 

intensities, which were outputted differently from cells, was established and a cell-

counting algorithm that can perform automatic cell counting through the standardization 

was developed in the present study. 

In the present study, immunofluorescence staining was conducted with six types of 

cancer cell-line controls using DAPI, CK, and CD45 and analyzed through the 

developed fluorescence-based optical system in order to verify the accuracy and 

reliability of the cell-counting algorithm developed in the present study.  

Each CLC showed 95% accuracy for each CLC using the cell-counting algorithm, and 

the SD was ±0.027. The present study also proved that the correlation coefficient of 

automatic counting was 0.991 through regression analysis. The accuracy and reliability 

of the cell-counting algorithm used in the present paper were proven through 

verification tests using each of the CLCs, and the algorithm is expected to be applied to 

various fluorescence staining-based analyses. 

 

Keyword: automated cell counting, cell morphology, Analysis, cell counting algorithm 

 

 

 

 

 

 

 

 



Introduction 

 

It is critical to ensure the counting of cancer cells clinically is accurate. This is because 

the number of cancer cells in blood can be a measure for predicting the state of patients 

[1]. The accurate detection and analysis of cancer cells for accurate cancer cell counting 

contribute to cancer diagnosis through clear understanding on cancer development, 

clinical treatment efforts for cancer patients, medical development, and mechanical 

research [2–3]. However, the number of cancer cells detected in patients is small and 

varies depending on the state of the patient, which is why accurate counting by humans 

is regarded as highly difficult. Even if cell counting can be performed accurately by 

humans, the results can vary even with the same sample due to reading variability.  

In order to count cancer cells without errors, standardized and automated processes will 

be integrated into a single flow. In the field of cytology automation, research on the 

processes that isolate cancer cells involving fluorescence-stained followed by 

performing an automatic counting method has been performed continuously [4–7]. 

Immunofluorescence staining is a process that is conducted in priority to identify cancer 

cells. It is proposed because it is difficult to count cancer cells automatically through 

imaging analysis if the cells are observed using general microscopes, as cancer cells are 

seen as transparent water droplets. Fluorescence staining helps identify cancer cells 

using fluorescence-based optical microscopes. The counting method is performed with 

images produced from fluorescence-based optical microscopes. The outputted images 

support the analysis of the morphology and intensity of cells through the imaging 

process technique-applied algorithm, and automatic counting can be conducted based on 

the analysis [8–9].  

Cancer cells are identified as follows: Cancer cells extracted via purification assays are 

verified through a typical cancer cell marker (CK), leukocyte marker (CD45), and 

nuclear staining (DAPI) in order to distinguish cancer cells from leukocytes. Here, 

cancer cells are identified with DAPI (+) positive, CK (+) positive, and CD45 (-) 

negative, and white blood cells (WBCs) are identified with DAPI (+) positive, CK (-) 

negative, and CD45 (+) positive. The identified cancer cells are all listed. However, 

because fluorescent intensities of fluorescence-stained cells are outputted differently, it 

is difficult to count cancer cells automatically. Thus, the standardization of fluorescence 



intensities, which were outputted differently from cells, was established, and a cell-

counting algorithm that can perform automatic cell counting through the standardization 

was developed in the present study. The cell-counting algorithm is a system that 

performs counting automatically through image processing based on morphology 

characteristics, such as size, area, area intensity, and circularity [10–15]. 

In the present study, tests were conducted using six types of cancer cell-line controls 

(CLCs) (DU145, H358, H460, H2228, LNCaP, and PC9) in order to verify the accuracy 

and reliability of the cell-counting algorithm developed by our company. 

 

Materials and Methods 

 

Sample Preparation 

 

The samples fabricated in the present study were divided into A-Type, B-Type, C-Type, 

and D-Type. The CLCs used in the test were H358, H460, H2228, LNCaP, Du145, and 

PC9. A-Type was made by mixing about 100 WBCs with the CLCs. The mixed cells 

were fixed with 4% paraformaldehyde for 5 min, air-dried, and attached to a glass slide. 

For A-Type, each CLC had five samples, so a total of 30 A-Type samples were made. A-

Type is a sample for comparing the counting results of the automatic mode with those 

using the manual mode when the cell-counting algorithm was applied to the CLCs. B-

Type was made by mixing about 100 WBCs with the following approximate numbers of 

PC9 cells: 10, 50, 100, and 300. Three glass slides to which about 10 PC9 cells were 

attached, three glass slides to which about 50 PC9 cells were attached, three glass slides 

to which about 100 PC9 cells were attached, and finally one glass slide to which about 

300 PC9 cells were attached were fabricated. B-Type is a sample for verifying the linear 

correlation coefficient of the cell-counting algorithm and proving its accuracy. For C-

Type, only one sample was fabricated by attaching about 1,000 WBCs. C-Type is a 

sample for setting the cut-off range with regard to WBCs. D-Type was fabricated by 

attaching about 1,000 CLCs only in contrast with C-Type. For D-Type, each CLC had a 

single sample, so a total of six D-Type samples were made. D-Type is a sample for 

setting the cut-off range with regard to each CLC.  

 



Immunofluorescent staining 

 

Cells on slides were permeabilized with 0.2% Triton-X 100 in phosphate buffer saline 

(PBS) for 10 min. Cells were then blocked with 1% bovine serum albumin (BSA) in 

PBS for 30 min and incubated with primary antibodies followed by secondary 

antibodies. The primary antibodies were mouse anti-pan CK (Sigma) and rabbit anti-

CD45 (Cell Signaling Technology). The secondary antibody was goat anti-rabbit Alexa 

647 (Invitrogen) and goat anti-mouse Alexa 488 (Invitrogen). The slides were mounted 

with Fluoroshield with DAPI (ImmunoBioScience). The staining protocol was applied 

to all samples equivalently. 

 

Imaging detection 

 

It is necessary to maintain fluorescence reflectance constantly in order to shoot the 

fluorescence samples and analyze the images. The fluorescence intensity stained in cells 

weakens over time [16]. Inconsistent fluorescence reflectance makes counting difficult 

because it is correlated to the fluorescence intensity of each cell. Thus, it is necessary to 

have a rule that can maintain and analyze the cell fluorescence rate in the glass slide 

constantly. The samples were stored in a cartridge that can block the light after 

completing fluorescence staining in order to maintain the fluorescence rate for each cell 

and shoot in sequence. Light was blocked from the samples prior to shooting. 

A cell image analyzer device, which was developed at our company, was used to shoot 

the glass slide. The lenses mounted on the device had magnitudes of 4x, 10x, 20x, and 

40x, and a 10x magnitude lens was used in the present study. The charge-coupled device 

(CCD) (Infinity 3-3UR) was the mono type, and each image had 1936x1456 pixels. The 

lighting (SOLA SM II) was a white light type whose wavelength ranged from 380nm–

680nm. For the filter, UV2A was used to shoot DAPI, and for CK, FITC was used, and 

for CD45, Cy5 was used (the fluorescence filters were from Nikon). The images shot 

via each of the filters were used to count the CLCs. To set up the CCD for shooting the 

CLCs, only exposure time and gain value were applied. In order to shoot DAPI, CK, 

and CD45 in the same conditions and environment, the exposure time and gain value 

were set to 400 ms and 5x, respectively. The intensity of the lighting was set to 15% for 



DAPI, 5% for CK, and 60% for CD45.  

It was necessary to have focusing essentially to shoot cell images. Since the level of 

focusing with the 10x lens was 8.5 micrometers, precise control was required. If a cell 

was shot out of the 8.5 micrometer range, its boundary was blurred, making counting 

difficult. If blurred cell images are counted, data, such as area, diameter, and 

fluorescence intensity data, are not reliable. In the present study, all samples were 

focused to be inside the 8.5-micrometer range, thereby enabling the extraction of clear 

images of all ranges for the accurate extraction of cell shapes.  

The stained cells in the glass slide were distributed in an 8-mm-diameter circle range. 

The range of 8 mm was the index set to be applied to the cell image analyzer. The cell 

image analyzer can shoot a total area in the 8-mm-diameter circle automatically. The 

total number of images that were shot in the 8-mm-diameter circle area was 120, and 

they were stitched to make a single image to be applied to the counting algorithm. Each 

of the three filters produced a stitched image, so a total of three images were obtained. 

Fig. 1A shows the procedure of image extraction from the samples sequentially. 

 

Cell Counting Algorithm 

 

The cell-counting algorithm is a system that performs counting automatically through 

image processing based on morphology characteristics, such as size, area, fluorescence 

intensity, and circularity. The cell-counting algorithm identifies cells and counts them 

automatically. Fig. 1B shows a flow chart for the cell-counting algorithm. First, a DAPI 

image is opened and thresholding is performed. Thresholding refers to the conversion of 

a 24-bit color image into a 1-bit image after binarization. In a 1-bit image, the 

fluorescence intensity is outputted to 0 or 1 only from a single pixel. Binarization is a 

widely used technique that can simplify complex images, such as 24-bit images, into 0 

or 1 in order to analyze and process them. Using the area, diameter, and other cell data 

from the binarized images, first and second filtering are performed to detect cells. The 

first filtering is conducted to eliminate image noise. Image noise is related to the 

background of the image. Noise in the binarized image is represented as 1 in the pixel, 

which is distributed widely over the background in the image. Normally, a general white 

image can be seen clearly even with a low exposure time in the CCD, whereas 



fluorescent images cannot show a fluorescence sample if the exposure time is low. Thus, 

a fluorescence sample has to be observed with a long exposure time in fluorescent 

images, and noise occurs due to a long exposure time. Since noise influences cell 

identification, the filtering of noise is needed. The second filtering is to eliminate 

foreign matters. Foreign matters are expressed with various types in contrast with noise. 

For example, the following cases are recognized as foreign matters if an image shape is 

larger than that of a cell, if a diameter of a shape is larger than that of a cell, or if the 

shape is not a cell. In order to perform the second filtering, the cut-off range of the area 

and diameter of the cell is set and inputted into the algorithm. The unit of the cut-off 

diameter and area of the cell is pixels, and a pixel is 1.2 micrometers in size. After the 

first and second filtering, the image coordinates are implemented through the detected 

DAPI. The cells detected in the DAPI image are also located in the same spots in CK 

and CD45 images. Thus, the coordinates of cells extracted from the DAPI image are 

synchronized with the coordinates of CK and CD45. A rectangular range as large as the 

cell size is drawn through the synchronized coordinates of each cell. The mean value of 

fluorescence intensity is calculated and stored for every rectangular range through the 

coordinates of DAPI, CK, and CD45. Fluorescence intensity refers to the color intensity 

of each pixel, which is expressed as a number through which a cell can be identified. 

The stored data, such as the area, diameter, and fluorescence intensity of cells, are used 

to count the cells automatically. 

The analyzed cell data are expressed as a graph. The graph is used to verify the 

automatic counting result. The X and Y axes in the graph can represent the cell data 

selectively. The selectively represented data can be the cell number, area, diameter, or 

fluorescence intensity. The X-axis in the graph of Fig. 2A represents the mean value of 

fluorescence intensity in the CK image, and the Y-axis represents the mean value of the 

fluorescence intensity in the CD45 image. The images extracted through the graph 

represent the cell types that are counted in the present study. 

Fig. 2B shows CLCs that are identified through the cell-counting algorithm. The cell 

identification method for the CK and CD45 images other than DAPI is distinguished by 

(-) negative and (+) positive and identified via the cut-off range of fluorescence intensity. 

The CK and CD45 image of each CLC has a different cut-off range of fluorescence 

intensity distinguished by (-) negative and (+) positive [17]. The difference in the (+) 



positive cut-off range in CK and CD45 from CLC to CLC is due to the characteristics of 

CLCs and the light wavelength intensity that is reflected to the CLCs through the filters. 

This is because every DAPI, CK, and CD45 has a different range of excitation and the 

lighting also has different exposure strength in every region of the wavelength. The 

reaction level to fluorescence is also different from CLC to CLC, which can be a 

variable. To set the (+) positive cut-off range as mentioned above, it is necessary to 

study the identification of each CLC beforehand. C-Type and D-type are the samples 

used to set the (+) positive cut-off range of the CLCs and WBCs. 

 

Results and Discussion 

 

Set-up of (+) positive cut-off range 

 

Fig. 1B shows two parts of the cut-off range in the algorithm: one is the area and 

diameter, and the other is the intensity. Thus, a preliminary test was conducted to set the 

cut-off range of each CLC and WBC prior to executing cell counting. First, 

fluorescence-stained C-Type and D-Type samples with only CLCs and WBCs were 

fabricated and images were extracted through the cell image analyzer. By applying the 

cell-counting algorithm to the extracted images, the area, diameter, and intensity of the 

CLCs and WBCs were analyzed. Figs. 3 and 4 show graphs of the results.  

Fig. 3A shows the mean diameter of each cell. The unit of the Y-axis is pixels, and each 

pixel is 1.2 micrometers. The mean diameter was a value extracted from the DAPI 

images. The results were as follows: 4.9 pixels for WBCs, 7.6 pixels for PC9, 8.2 pixels 

for LNCaP, 7.0 pixels for H2228, 6.9 pixels for H460, 7.0 pixels for H358, and 6.5 

pixels for DU145. The standard deviation (SD) of the error bar was calculated by 95% 

confidence intervals [18]. The SDs of WBCs, PC9, LNCaP, H2228, H460, H358, and 

DU145 were ±1.5, ±2.1, ±2.3, ±1.8, ±1.8, ±1.8, and ±1.9, respectively. Fig. 3B shows 

the mean area of each cell. The unit of the Y-axis is pixels, and the area was calculated. 

The mean area was a value extracted from the DAPI images. The results were as 

follows: 32.0 pixels for WBCs, 76.3 pixels for PC9, 87.9 pixels for LNCaP, 65.0 pixels 

for H2228, 62.7 pixels for H460, 63.7 pixels for H358, and 56.5 pixels for DU145. The 

SD of the error bar was also calculated 95% confidence intervals. The SDs of WBCs, 



PC9, LNCaP, H2228, H460, H358, and DU145 were ±25.0, ±47.1, ±51.4, ±37.3, ±33.2, 

±35.5, and ±35.7, respectively. Based on the above data, the cut-off range for the 

diameter and area was set. To count all cells, the upper and lower limits in the cut-off 

range were set to the maximum and minimum values in the error bar among all the cells. 

The upper limits of the cut-off range for diameter and area were 10.5 pixels and 139.3 

pixels, which were the maximum values of LNCaP, and the lower limits were 3.4 pixels 

and 7.0 pixels, which were the minimum values of WBCs.  

Fig. 4 shows the intensity value of each cell. The X-axis represents the number of cells 

distributed over each sample, and the Y-axis represents the cell intensity (0–225) of the 

CK and CD45 images. P1 refers to the upper limit in each graph, mean refers to the 

mean value, and P2 refers to the lower limit. The upper and lower limits are the 

maximum and minimum values in the error bar through SD. The lower limit of the cut-

off range of CK was based on the upper limit of WBCs, and the upper limit was based 

on the upper limit of PC9. This was because the upper limit of WBCs was lower than 

the lower limit of the CLCs. Similarly, CD45 was also based on WBCs; the upper limit 

was applied without change, but the mean value was applied for the lower limit. This 

was because the lower limit of WBCs was applied higher than the upper limit of the 

CLCs in order to distinguish the CLCs from WBCs. As shown in the CD45 graph, the 

mean value of WBCs was higher than the upper limit of the CLCs. The finally set 

intensity cut-off values of the CK image were 7 and 255, which were the limit values of 

WBCs and PC9, while the intensity cut-off values of CD45 were 64 and 121, which 

were the upper limit and mean value of WBCs. Since the unit of the intensity cut-off 

range was pixels, all decimal points were rounded up. If the intensities of cells in CK 

and CD45 were within this range, the cells were identified as (+) positive in each image. 

The reason for the same cut-off range between the WBCs and CLCs was to comply with 

the purpose of the automatic cell counting. 

 

Cell counting 

 

The automatic and manual counting results were similar after applying the set cut-

off range to the cell-counting algorithm and manual counting the B-Type samples. B-

Type refers to a sample where 10ea, 50ea, 100ea, and 300ea of PC9 were attached to 



each glass slide. Fig. 5A shows a graph that compares the counting results between 

automatic and manual counting. The X-axis represents the number of samples counted 

manually, while the Y-axis represents the number of samples counted automatically. The 

two results are represented with a distribution format, and the regression analysis results 

are shown with a linear trend line. Here, the correlation coefficient was 0.9991, which 

indicated that the reliability of the cell-counting algorithm according to the number of 

CLCs was 99.9%. 

A-Type samples, which were fabricated in order to verify the accuracy for other CLCs, 

were also counted. A-Type was a sample made by mixing CLCs and WBCs. A total of 

five samples were prepared for each CLC. The sample was used for verification to 

distinguish CLCs from WBCs and count CLCs only accurately. Fig. 5B shows a graph 

of automatic counting results with percentages based on the manual counting results for 

each CLC. The X-axis represents each CLC, and the Y-axis represents the manual and 

automatic mean counting percentages. As shown in the graph, each CLC showed 95% 

accuracy for each CLC using the cell-counting algorithm, and the SD was ±0.027. The 

accuracy of the cell-counting algorithm for various types of CLCs was verified through 

the above results. 

 

Conclusion 

 

The accuracy and reliability of the cell-counting algorithm with regard to the analysis 

and counting of various CLCs were verified. A difference in the features between CLCs 

and WBCs was clearly seen by analyzing the mixed CLCs and WBCs. For PC9, H358, 

and WBC, the intensities of CK and CD45 were clearly distinguished, but LNCaP, 

H2228, H460, and DU145 were not clearly distinguished. However, this issue was 

about the re-establishment of the staining rule for each CLC and not within the scope of 

the present paper. Rather, the present study proved the accuracy of the cell-counting 

algorithm through the unclearly distinguished intensities, which contributes to the 

automatic counting field of fluorescent cells positively. 

The cell-counting algorithm was analyzed through the setup of the cut-off range, which 

produced no reproduction error. In contrast, since manual counting is performed by 

individuals, different errors can be produced even if the same samples are counted. It is 



difficult for humans to count 1,000 or more CLCs manually. On the other hand, if 

counting is performed via devices embedded with the cell-counting algorithm, 10,000 

cells can be analyzed and counted within 15 min automatically. The cell-counting 

algorithm can be applied to not only the cell image analyzer developed by our company, 

but also any device. The cell-counting algorithm can contribute to the field of cytology 

automation significantly. 

The accuracy and reliability of the cell counting algorithm used in the present paper 

were proven through verification tests using each of the CLCs, and the algorithm is 

expected to be applied to various fluorescence staining-based analyses and contribute to 

accurate cell analysis in the future. 
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Figure Legends 

 

Figure 1. Sample preparation process and a flow chart of the cell-counting 

algorithm. (A) Prepared glass slide is mounted on the cell image analyzer system, and 

images are shot. Focusing is performed by controlling the depth of focus of cells 

wherever cells are shot, and DAPI, EpCAM, and CD45 images are extracted. (b) A flow 

chart for the cell-counting algorithm.  

 

Figure 2. Cell-counting program and identified types of cancer cells. (A) The cell-

counting algorithm-applied program and identification method. The X-axis in the graph 

represents the mean value of fluorescence intensity of the CK image, and the Y-axis 

represents the mean value of fluorescence intensity in the CD45 image. The images 

extracted through the graph represent cell types that are counted in the present study. (b) 

CLCs that are identified through the cell-counting algorithm. The cell identification 

method for CK and CD45 images other than DAPI is distinguished by (-) negative and 

(+) positive and identified via the cut-off range of fluorescence intensity. 

 

Figure 3. Analysis of area and diameter to set up the cut-off range of cell size. By 

applying the cell-counting algorithm, the area and diameter of CLCs and WBCs are 

analyzed. (A) The mean diameter of each cell. The unit of the Y-axis is pixels, and each 

pixel is 1.2 micrometers long. The mean diameter is a value extracted from DAPI 

images. (B) The mean area of each cell. The unit of the Y-axis is pixels, and the area is 

calculated. The mean area is a value extracted from DAPI images.  

 

Figure 4. Analysis of fluorescence intensity to set up the (+) positive cut-off range. 

The graph expresses the intensity value of each cell. The X-axis represents the number 

of cells distributed over each sample, and the Y-axis represents the cell intensity (0–225) 

of the CK and CD45 images. P1 refers to the upper limit in each graph, mean refers to 

the mean value, and P2 refers to the lower limit. The upper and lower limits are the 

maximum and minimum values in the error bar through SD. 

 

Figure 5. Counting results after applying the cell-counting algorithm. (A) The graph 



compares the counting results between automatic and manual counting. The X-axis 

represents the number of samples counted manually, while the Y-axis represents the 

number of samples counting automatically. The linear trend line is the regression 

analysis results of two results via the distribution chart. (B) A graph of automatic 

counting results with percentages based on the manual counting results for each CLC. 

The X-axis represents each CLC, and the Y-axis represents the manual and automatic 

mean counting percentages. 
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